skip to main content


Search for: All records

Creators/Authors contains: "Fan, Jonathan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 28, 2024
  2. In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and “topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise make it challenging to be confident that new algorithms and software are functioning as claimed. We include test problems that exercise a wide array of physical and mathematical features—far-field metalenses, 2d and 3d mode converters, resonant emission and focusing, and dispersion/eigenvalue engineering—and introduce ana posteriorilengthscale metric for comparing designs produced by disparate algorithms. For each problem, we incorporate cross-checks against multiple independent software packages and algorithms, and reproducible designs and their validations scripts are included. We believe that this suite should make it much easier to develop, validate, and gain trust in future inverse-design approaches and software.

     
    more » « less
  3. Abstract

    Nanophotonic devices are optical platforms capable of unprecedented wavefront control. To push the limits of experimental device performance, scalable design methodologies that combine the simplicity and fabricability of conventional design paradigms with the extended capabilities of freeform optimization are required. A novel gradient‐based design framework for large‐area freeform metasurfaces is introduced in which nonlocal interactions between simply shaped nanostructures, placed on an irregular lattice, are tailored to produce high‐order hybridized modes that support customizable large‐angle scattering profiles. Utilizing this approach, multifunctional super‐dispersive metalenses are designed and experimentally demonstrated. The approach to high‐numerical‐aperture radial metalenses capable of diffraction limited focusing and the generation of donut‐shaped point spread functions is also extended. It is anticipated that these concepts will have utility in super‐resolution microscopy, particle trapping, additive manufacturing, and metrology applications that require ultra‐high numerical apertures.

     
    more » « less
  4. Abstract

    Dynamic control over the polarization state of light is foundational for many scientific and technological applications, yet it remains a challenge to dynamically tailor responses with arbitrary polarization bases over a broad bandwidth. Broadband metasurface systems that utilize microscale displacements between two metasurfaces to enable reconfigurable polarization responses within a predefined polarization basis are reported. The metasurface pairs form an interferometer, and the lateral displacements produce detour phase shifts within the interferometer beam paths that mediate polarization state tuning. It is shown how the metasurface systems can be designed using freeform topology optimization to enable tailorable elliptical birefringence responses over a large bandwidth and how cascaded metasurface systems can enable the mapping of input and output polarization states between any two points on the Poincare sphere. It is anticipated that these concepts will have utility in imaging, display, communications, and metrology applications in classical and quantum optical domains.

     
    more » « less
  5. null (Ed.)